Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38662544

RESUMO

Umbilical cord blood (CB) is a donor source for hematopoietic cell therapies. Understanding what drives hematopoietic stem and progenitor cell function is critical to our understanding of the usage of CB in hematopoietic cell therapies. Here, we describe how to isolate and analyze the function of human hematopoietic cells from umbilical CB. This protocol demonstrates assays that measure phenotypic properties and hematopoietic cell potency. For complete details on the use and execution of this protocol, please refer to Broxmeyer et al.1.

2.
Cell Rep Med ; 4(11): 101259, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913777

RESUMO

Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Sangue Fetal , Criopreservação
3.
Curr Opin Hematol ; 30(4): 106-116, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074304

RESUMO

PURPOSE OF REVIEW: Natural killer (NK) cells are a type of immune cell that play a crucial role in the defense against cancer and viral infections. The development and maturation of NK cells is a complex process, involving the coordination of various signaling pathways, transcription factors, and epigenetic modifications. In recent years, there has been a growing interest in studying the development of NK cells. In this review, we discuss the field's current understanding of the journey a hematopoietic stem cell takes to become a fully mature NK cell and detail the sequential steps and regulation of conventional NK leukopoiesis in both mice and humans. RECENT FINDINGS: Recent studies have highlighted the significance of defining NK development stages. Several groups report differing schema to identify NK cell development and new findings demonstrate novel ways to classify NK cells. Further investigation of NK cell biology and development is needed, as multiomic analysis reveals a large diversity in NK cell development pathways. SUMMARY: We provide an overview of current knowledge on the development of NK cells, including the various stages of differentiation, the regulation of development, and the maturation of NK cells in both mice and humans. A deeper understanding of NK cell development has the potential to provide insights into new therapeutic strategies for the treatment of diseases such as cancer and viral infections.


Assuntos
Células-Tronco Hematopoéticas , Células Matadoras Naturais , Humanos , Animais , Camundongos , Diferenciação Celular , Fatores de Transcrição/metabolismo , Transdução de Sinais
4.
Front Immunol ; 14: 1026368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911703

RESUMO

Bone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.


Assuntos
Medula Óssea , Linfócitos T Reguladores , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Homeostase
6.
Methods Mol Biol ; 2567: 113-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255698

RESUMO

Regulation of hematopoiesis is dependent upon interactions between hematopoietic stem/progenitor cells and niche components, requiring a highly diverse array of different cell-cell interactions and cell signaling events. The overwhelming diversity of the components that can regulate hematopoiesis, especially when factoring in how the cell surface and intracellular protein expression profiles of hematopoietic stem/progenitor cells and niche components differ between homeostatic conditions and stressed conditions such as aging and irradiation, can make utilizing techniques like flow cytometry daunting, particularly while examining small cell populations such as hematopoietic stem cells (HSCs). Due to the complexity of the hematopoietic system, high-dimensional single-cell genomics and proteomics are constantly performed to understand the heterogeneity and expression profiles within this system. This chapter describes one such single-cell assay, which utilizes mass cytometry Time of Flight (CyTOF) technology to determine differences in expression profile within HSC, using changes in HSC populations due to gender and aging.


Assuntos
Hematopoese , Nicho de Células-Tronco , Nicho de Células-Tronco/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas , Comunicação Celular , Fenótipo
7.
Methods Mol Biol ; 2567: 205-232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255704

RESUMO

Experimental hematopoietic stem cell transplantation (HSCT) is an invaluable tool in determining the function and characteristics of hematopoietic stem cells (HSC) from experimental mouse and human donor groups. These groups could include, but are not limited to, genetically altered populations (gene knockout/knockin models), ex vivo manipulated cell populations, or in vivo modulated cell populations. The basic fundamentals of this process involve taking cells from a mouse/human donor source and putting them into another mouse (recipient) after preconditioning of the recipient with either total body irradiation (TBI) for mouse donor cells or into sublethally irradiated immune-deficient mice for human donor cells. Then, at pre-determined time points post-transplant, sampling a small amount of peripheral blood (PB) and at the termination of the evalaution, bone marrow (BM) to determine donor contribution and function by phenotypic analysis. Exploiting the congenic mouse strains of C57BL/6 (CD45.1- CD45.2+), BoyJ (CD45.1+ CD45.2-), and their F1-crossed hybrid C57BL/6 × BoyJ (CD45.1+ CD45.2+), we are able to quantify donor, competitor, and recipient mouse cell contributions to the engraftment state. Human donor cell engraftment (e.g., from the cord blood [CB], mobilized PB, or BM) is assessed by human cell phenotyping in sublethally irradiated immune-deficient mouse recipients (e.g., NOD scid gamma mice that are deficient in B cells, T cells, and natural killer cells and have defective dendritic cells and macrophages). Engraftment of cells from primary mouse recipients into secondary mice allows for an estimation of the self-renewal capacity of the original donor HSC. This chapter outlines concepts, methods, and techniques for mouse and human cell models of HSCT and for assessment of donor cells collected and processed in hypoxia versus ambient air.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Camundongos SCID , Camundongos Endogâmicos NOD , Modelos Teóricos
8.
Front Cell Infect Microbiol ; 12: 940937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189369

RESUMO

The prevalence of obesity is increasingly common in the United States, with ~25% of women of reproductive age being overweight or obese. Metaflammation, a chronic low grade inflammatory state caused by altered metabolism, is often present in pregnancies complicated by obesity. As a result, the fetuses of mothers who are obese are exposed to an in-utero environment that has altered nutrients and cytokines. Notably, both human and preclinical studies have shown that children born to mothers with obesity have higher risks of developing chronic illnesses affecting various organ systems. In this review, the authors sought to present the role of cytokines and inflammation during healthy pregnancy and determine how maternal obesity changes the inflammatory landscape of the mother, leading to fetal reprogramming. Next, the negative long-term impact on offspring's health in numerous disease contexts, including offspring's risk of developing neuropsychiatric disorders (autism, attention deficit and hyperactive disorder), metabolic diseases (obesity, type 2 diabetes), atopy, and malignancies will be discussed along with the potential of altered immune/inflammatory status in offspring as a contributor of these diseases. Finally, the authors will list critical knowledge gaps in the field of developmental programming of health and diseases in the context of offspring of mothers with obesity, particularly the understudied role of hematopoietic stem and progenitor cells.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Materna , Criança , Citocinas , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Inflamação/metabolismo , Obesidade/complicações , Obesidade/epidemiologia , Gravidez
9.
Blood ; 140(11): 1263-1277, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772013

RESUMO

Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation. HSCs under physioxia also exhibited downregulation of the epigenetic modifier Tet2. Tet2 is α-ketoglutarate, iron- and oxygen-dependent dioxygenase that converts 5-methylcytosine to 5-hydroxymethylcytosine, thereby promoting active transcription. We evaluated whether loss of Tet2 affects the number and function of HSCs and hematopoietic progenitor cells (HPCs) under physioxia and ambient air. In contrast to wild-type HSCs (WT HSCs), a complete nonresponsiveness of Tet2-/- HSCs and HPCs to changes in oxygen tension was observed. Unlike WT HSCs, Tet2-/- HSCs and HPCs exhibited similar numbers and function in either physioxia or ambient air. The lack of response to changes in oxygen tension in Tet2-/- HSCs was associated with similar changes in self-renewal and quiescence genes among WT HSC-physioxia, Tet2-/- HSC-physioxia and Tet2-/- HSC-air. We define a novel molecular program involving Tet2 in regulating HSCs under physioxia.


Assuntos
5-Metilcitosina , Dioxigenases , 5-Metilcitosina/metabolismo , Diferenciação Celular/fisiologia , Dioxigenases/metabolismo , Regulação para Baixo , Células-Tronco Hematopoéticas/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos , Oxigênio/metabolismo
10.
Stem Cell Rev Rep ; 18(7): 2513-2521, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35262902

RESUMO

Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2-/- and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2-/- cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk-/- mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Oxigênio , Animais , Células da Medula Óssea , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Camundongos , Camundongos Knockout , Oxigênio/farmacologia
11.
Stem Cell Rev Rep ; 18(4): 1478-1494, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318613

RESUMO

Exposure to potentially lethal high-dose ionizing radiation results in bone marrow suppression, known as the hematopoietic acute radiation syndrome (H-ARS), which can lead to pancytopenia and possible death from hemorrhage or infection. Medical countermeasures to protect from or mitigate the effects of radiation exposure are an ongoing medical need. We recently reported that 16,16 dimethyl prostaglandin E2 (dmPGE2) given prior to lethal irradiation protects hematopoietic stem (HSCs) and progenitor (HPCs) cells and accelerates hematopoietic recovery by attenuating mitochondrial compromise, DNA damage, apoptosis, and senescence. However, molecular mechanisms responsible for the radioprotective effects of dmPGE2 on HSCs are not well understood. In this report, we identify a crucial role for the NAD+-dependent histone deacetylase Sirtuin 1 (Sirt1) downstream of PKA and CREB in dmPGE2-dependent radioprotection of hematopoietic cells. We found that dmPGE2 increases Sirt1 expression and activity in hematopoietic cells including HSCs and pharmacologic and genetic suppression of Sirt1 attenuates the radioprotective effects of dmPGE2 on HSC and HPC function and its ability to reduce DNA damage, apoptosis, and senescence and stimulate autophagy in HSCs. DmPGE2-mediated enhancement of Sirt1 activity in irradiated mice is accompanied by epigenetic downregulation of p53 activation and inhibition of H3K9 and H4K16 acetylation at the promoters of the genes involved in DNA repair, apoptosis, and autophagy, including p53, Ku70, Ku80, LC3b, ATG7, and NF-κB. These studies expand our understanding of intracellular events that are induced by IR but prevented/attenuated by dmPGE2 and suggest that modulation of Sirt1 activity may facilitate hematopoietic recovery following hematopoietic stress. Graphical Abstract.


Assuntos
Células-Tronco Hematopoéticas , Sirtuína 1 , Proteína Supressora de Tumor p53 , Animais , Apoptose/genética , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
12.
J Leukoc Biol ; 112(3): 449-456, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137444

RESUMO

Few cytokines/growth modulating proteins are known to be chemoattractants for hematopoietic stem (HSC) and progenitor cells (HPC); stromal cell-derived factor 1α (SDF1α/CXCL12) being the most potent known such protein. DEK, a nuclear DNA-binding chromatin protein with hematopoietic cytokine-like activity, is a chemotactic factor attracting mature immune cells. Transwell migration assays were performed to test whether DEK serves as a chemotactic agent for HSC/HPC. DEK induced dose- and time-dependent directed migration of lineage negative (Lin- ) Sca-1+ c-Kit+ (LSK) bone marrow (BM) cells, HSCs and HPCs. Checkerboard assays demonstrated that DEK's activity was chemotactic (directed), not chemokinetic (random migration), in nature. DEK and SDF1α compete for HSC/HPC chemotaxis. Blocking CXCR2 with neutralizing antibodies or inhibiting Gαi protein signaling with Pertussis toxin pretreatment inhibited migration of LSK cells toward DEK. Thus, DEK is a novel and rare chemotactic agent for HSC/HPC acting in a direct or indirect CXCR2 and Gαi protein-coupled signaling-dependent manner.


Assuntos
Células-Tronco Hematopoéticas , Proteínas Nucleares , Células da Medula Óssea/metabolismo , Quimiotaxia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Interleucina-8B/metabolismo
13.
Sci Adv ; 8(2): eabh3375, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020422

RESUMO

Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.

14.
Leukemia ; 36(3): 821-833, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34599272

RESUMO

Little is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm-/- mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs. However, increased Brm-/- BM HSC numbers had decreased secondary and tertiary engraftment, suggesting BRM enhances HSC self-renewal. Valine was elevated in lineage negative Brm-/- BM cells, linking intracellular valine with Brm expression. Valine enhanced HPC colony formation, replating of human cord blood (CB) HPC-derived colonies, mouse BM and human CB HPC survival in vitro, and ex vivo expansion of normal mouse BM HSCs and HPCs. Valine increased oxygen consumption rates of WT cells. BRM through CD98 was linked to regulated import of branched chain amino acids, such as valine, in HPCs. Brm-/- LSK cells exhibited upregulated interferon response/cell cycle gene programs. Effects of BRM depletion are less apparent on isolated HSCs compared to HSCs in the presence of HPCs, suggesting cell extrinsic effects on HSCs. Thus, intracellular valine is regulated by BRM expression in HPCs, and the BRM/valine axis regulates HSC and HPC self-renewal, proliferation, and possibly differentiation fate decisions.


Assuntos
Autorrenovação Celular , Montagem e Desmontagem da Cromatina , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição/metabolismo , Valina/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética
15.
J Cell Mol Med ; 25(24): 11039-11052, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791807

RESUMO

Acute myeloid leukaemia (AML) is an aggressive form of blood cancer that carries a dismal prognosis. Several studies suggest that the poor outcome is due to a small fraction of leukaemic cells that elude treatment and survive in specialised, oxygen (O2 )-deprived niches of the bone marrow. Although several AML drug targets such as FLT3, IDH1/2 and CD33 have been established in recent years, survival rates remain unsatisfactory, which indicates that other, yet unrecognized, mechanisms influence the ability of AML cells to escape cell death and to proliferate in hypoxic environments. Our data illustrates that Carbonic Anhydrases IX and XII (CA IX/XII) are critical for leukaemic cell survival in the O2 -deprived milieu. CA IX and XII function as transmembrane proteins that mediate intracellular pH under low O2 conditions. Because maintaining a neutral pH represents a key survival mechanism for tumour cells in O2 -deprived settings, we sought to elucidate the role of dual CA IX/XII inhibition as a novel strategy to eliminate AML cells under hypoxic conditions. Our findings demonstrate that the dual CA IX/XII inhibitor FC531 may prove to be of value as an adjunct to chemotherapy for the treatment of AML.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Adulto , Idoso , Animais , Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Anidrases Carbônicas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Duplicação Gênica , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
16.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464351

RESUMO

The heterogeneity of human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) under stress conditions such as ex vivo expansion is poorly understood. Here, we report that the frequencies of SCID-repopulating cells were greatly decreased in cord blood (CB) CD34+ HSCs and HPCs upon ex vivo culturing. Transcriptomic analysis and metabolic profiling demonstrated that mitochondrial oxidative stress of human CB HSCs and HPCs notably increased, along with loss of stemness. Limiting dilution analysis revealed that functional human HSCs were enriched in cell populations with low levels of mitochondrial ROS (mitoROS) during ex vivo culturing. Using single-cell RNA-Seq analysis of the mitoROS low cell population, we demonstrated that functional HSCs were substantially enriched in the adhesion GPCR G1-positive (ADGRG1+) population of CD34+CD133+ CB cells upon ex vivo expansion stress. Gene set enrichment analysis revealed that HSC signature genes including MSI2 and MLLT3 were enriched in CD34+CD133+ADGRG1+ CB HSCs. Our study reveals that ADGRG1 enriches for functional human HSCs under oxidative stress during ex vivo culturing, which can be a reliable target for drug screening of agonists of HSC expansion.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo
17.
PLoS One ; 16(7): e0252805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197491

RESUMO

Chemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7. We and others have reported that venule endothelium expressing CCL21 plays a crucial role in attracting naïve immune cells to sites of antigen presentation. In this study we generated a series of monoclonal antibodies to the amino terminus of CCL21 in an attempt to generate an antibody that blocked the interaction of CCL21 with its receptor CCR7. We found one humanized clone that blocked naïve T-cell migration towards CCL21, while memory effector T-cells were less affected. Using this monoclonal antibody, we also demonstrated that CCL21 is expressed in the mucosal venule endothelium of the large majority of inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and also in celiac disease. This expression correlated with active IBD in 5 of 6 cases, whereas none of 6 normal bowel biopsies had CCL21 expression. This study raises the possibility that this monoclonal antibody could be used to diagnose initial or recurrent of IBD. Significantly, this antibody could also be used for therapeutic intervention in IBD by selectively interfering with recruitment of naïve immune effector cells to sites of antigen presentation, without harming overall memory immunity.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Quimiocina CCL21/imunologia , Doenças Inflamatórias Intestinais/diagnóstico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quimiotaxia/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores CCR7/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
18.
J Bone Miner Res ; 36(6): 1117-1130, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592127

RESUMO

Fibroblast growth factor-23 (FGF23) is a critical factor in chronic kidney disease (CKD), with elevated levels causing alterations in mineral metabolism and increased odds for mortality. Patients with CKD develop anemia as the kidneys progressively lose the ability to produce erythropoietin (EPO). Anemia is a potent driver of FGF23 secretion; therefore, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) currently in clinical trials to elevate endogenous EPO to resolve anemia was tested for effects on iron utilization and FGF23-related parameters in a CKD mouse model. Mice were fed either a casein control diet or an adenine-containing diet to induce CKD. The CKD mice had markedly elevated iFGF23 and blood urea nitrogen (BUN), hyperphosphatemia, and anemia. Cohorts of mice were then treated with a patient-equivalent dose of BAY 85-3934 (BAY; Molidustat), which elevated EPO and completely resolved aberrant complete blood counts (CBCs) in the CKD mice. iFGF23 was elevated in vehicle-treated CKD mice (120-fold), whereas circulating iFGF23 was significantly attenuated (>60%) in the BAY-treated CKD mice. The BAY-treated mice with CKD also had reduced BUN, but there was no effect on renal vitamin D metabolic enzyme expression. Consistent with increased EPO, bone marrow Erfe, Transferrin receptor (Tfrc), and EpoR mRNAs were increased in BAY-treated CKD mice, and in vitro hypoxic marrow cultures increased FGF23 with direct EPO treatment. Liver Bmp-6 and hepcidin expression were downregulated in all BAY-treated groups. Femur trabecular parameters and cortical porosity were not worsened with BAY administration. In vitro, differentiated osteocyte-like cells exposed to an iron chelator to simulate iron depletion/hypoxia increased FGF23; repletion with holo-transferrin completely suppressed FGF23 and normalized Tfrc1. Collectively, these results support that resolving anemia using a HIF-PHI during CKD was associated with lower BUN and reduced FGF23, potentially through direct restoration of iron utilization, thus providing modifiable outcomes beyond improving anemia for this patient population. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Anemia , Insuficiência Renal Crônica , Anemia/tratamento farmacológico , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Humanos , Camundongos , Pirazóis , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Triazóis
19.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393491

RESUMO

Bone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT). BM cells reside in an in vivo hypoxic environment yet are evaluated after collection and processing in ambient air. We detected an increase in the number of both young and aged mouse BM HSCs collected and processed in 3% O2 compared with the number of young BM HSCs collected and processed in ambient air (~21% O2). Aged BM collected and processed under hypoxic conditions demonstrated enhanced engraftment capability during competitive transplantation analysis and contained more functional HSCs as determined by limiting dilution analysis. Importantly, the myeloid-to-lymphoid differentiation ratio of aged BM collected in 3% O2 was similar to that detected in young BM collected in ambient air or hypoxic conditions, consistent with the increased number of common lymphoid progenitors following collection under hypoxia. Enhanced functional activity and differentiation of old BM collected and processed in hypoxia correlated with reduced "stress" associated with ambient air BM collection and suggests that aged BM may be better and more efficiently used for HCT if collected and processed under hypoxia so that it is never exposed to ambient air O2.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Animais , Hipóxia Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...